Skip to content

Performance Optimization

Maximize your sniping success rate with advanced performance tuning techniques.

⚡ Quick Performance Checklist

  • [ ] Use high-quality residential proxies
  • [ ] Optimize concurrent_requests and request_delay_ms
  • [ ] Run on a server with low latency to Minecraft servers
  • [ ] Use SSD storage for faster I/O
  • [ ] Ensure stable, high-speed internet connection
  • [ ] Monitor system resources during sniping

⚙ Configuration Optimization

High-Performance Configuration

For maximum speed and success rate:

snipe:
  start_sniping_at_seconds: 30
  max_snipe_attempts: 200
  request_delay_ms: 10        # Aggressive timing
  concurrent_requests: 20     # High concurrency
  use_multiple_threads: true

proxy:
  enabled: true
  rotation_enabled: true
  timeout: 5                  # Fast timeout
  max_retries: 2              # Quick failover

discord:
  enabled: false              # Disable during snipe for performance

Conservative Configuration

For stability and compliance:

snipe:
  start_sniping_at_seconds: 45
  max_snipe_attempts: 100
  request_delay_ms: 50        # Respectful timing
  concurrent_requests: 5      # Lower concurrency
  use_multiple_threads: true

proxy:
  enabled: true
  rotation_enabled: true
  timeout: 10                 # Longer timeout
  max_retries: 3              # More retries

discord:
  enabled: true               # Keep notifications

📈 Performance Tuning Guide

1. Concurrent Requests Optimization

Find the optimal number of concurrent requests:

# Test different concurrency levels
concurrency_levels = [1, 5, 10, 15, 20, 25, 30]
results = {}

for level in concurrency_levels:
    config.concurrent_requests = level
    success_rate = run_performance_test(config)
    results[level] = success_rate

# Find optimal level
optimal_level = max(results, key=results.get)
print(f"Optimal concurrency: {optimal_level}")

Guidelines: - Start with 10 concurrent requests - Increase gradually while monitoring success rate - Watch for diminishing returns - more isn't always better - Consider proxy limits - don't exceed proxy capacity

2. Request Delay Optimization

Balance speed with rate limiting:

# Ultra-aggressive (high risk)
request_delay_ms: 5

# Aggressive (medium risk)
request_delay_ms: 15

# Balanced (recommended)
request_delay_ms: 25

# Conservative (low risk)
request_delay_ms: 50

Testing methodology:

# Test different delays
for delay in 5 10 15 25 50; do
    echo "Testing delay: ${delay}ms"
    python Main.py snipe --dry-run --request-delay $delay
done

3. Proxy Performance Optimization

Proxy Selection Criteria

Latency Testing:

import time
import requests

def test_proxy_latency(proxy_url):
    latencies = []

    for _ in range(10):
        start = time.time()
        try:
            response = requests.get(
                "https://api.minecraft.net/status",
                proxies={"http": proxy_url, "https": proxy_url},
                timeout=5
            )
            if response.status_code == 200:
                latency = (time.time() - start) * 1000
                latencies.append(latency)
        except:
            continue

    if latencies:
        avg_latency = sum(latencies) / len(latencies)
        return avg_latency
    return float('inf')

# Test all proxies and rank by latency
proxy_performance = {}
for proxy in proxy_list:
    latency = test_proxy_latency(proxy)
    proxy_performance[proxy] = latency

# Sort by performance
sorted_proxies = sorted(proxy_performance.items(), key=lambda x: x[1])

Geographic Optimization

Recommended proxy locations: 1. US East Coast - Closest to many Minecraft servers 2. US West Coast - Good for Pacific region 3. Europe (London/Amsterdam) - European servers 4. Singapore - Asian servers

proxy:
  proxies:
    # Prioritize by geographic proximity to Minecraft servers
    - "http://us-east-proxy1:port"     # Primary
    - "http://us-east-proxy2:port"     # Backup
    - "http://us-west-proxy1:port"     # Secondary
    - "http://europe-proxy1:port"      # Tertiary

💻 System Optimization

Hardware Requirements

Minimum specs: - CPU: 2 cores, 2.0 GHz - RAM: 4 GB - Storage: 1 GB free space - Network: 10 Mbps stable connection

Recommended specs: - CPU: 4+ cores, 3.0+ GHz - RAM: 8+ GB - Storage: SSD with 10+ GB free - Network: 100+ Mbps with low latency

Optimal specs: - CPU: 8+ cores, 3.5+ GHz (Intel i7/AMD Ryzen 7+) - RAM: 16+ GB - Storage: NVMe SSD - Network: Gigabit fiber with <10ms latency

Operating System Tuning

Linux Optimization

# Increase file descriptor limits
echo "* soft nofile 65536" >> /etc/security/limits.conf
echo "* hard nofile 65536" >> /etc/security/limits.conf

# Optimize network stack
echo "net.core.rmem_max = 16777216" >> /etc/sysctl.conf
echo "net.core.wmem_max = 16777216" >> /etc/sysctl.conf
echo "net.ipv4.tcp_rmem = 4096 65536 16777216" >> /etc/sysctl.conf
echo "net.ipv4.tcp_wmem = 4096 65536 16777216" >> /etc/sysctl.conf

# Apply changes
sysctl -p

Windows Optimization

# Increase network buffer sizes
netsh int tcp set global autotuninglevel=normal
netsh int tcp set global chimney=enabled
netsh int tcp set global rss=enabled

# Disable unnecessary services
sc config "Windows Search" start= disabled
sc config "Superfetch" start= disabled

Python Optimization

# Optimize Python runtime
import sys
import gc

# Disable garbage collection during sniping
gc.disable()

# Increase recursion limit if needed
sys.setrecursionlimit(10000)

# Use faster JSON library
try:
    import ujson as json
except ImportError:
    import json

# Optimize imports
from requests import Session
from concurrent.futures import ThreadPoolExecutor
from asyncio import create_task, gather

☁ Cloud Deployment

VPS Recommendations

Budget option: - DigitalOcean: $5/month droplet - Vultr: $2.50/month instance - Linode: $5/month nanode

Performance option: - AWS EC2: t3.medium or c5.large - Google Cloud: n1-standard-2 - Azure: Standard_B2s

Premium option: - Dedicated servers with guaranteed resources - Bare metal for maximum performance - Edge locations close to Minecraft servers

Docker Deployment

FROM python:3.9-slim

# Install system dependencies
RUN apt-get update && apt-get install -y \
    gcc \
    && rm -rf /var/lib/apt/lists/*

# Set working directory
WORKDIR /app

# Copy requirements and install
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt

# Copy application
COPY . .

# Optimize Python
ENV PYTHONUNBUFFERED=1
ENV PYTHONDONTWRITEBYTECODE=1

# Run sniper
CMD ["python", "Main.py", "snipe"]
# docker-compose.yml
version: '3.8'
services:
  namemc-sniper:
    build: .
    volumes:
      - ./config.yaml:/app/config.yaml
      - ./logs:/app/logs
    environment:
      - MINECRAFT_BEARER_TOKEN=${BEARER_TOKEN}
    restart: unless-stopped
    deploy:
      resources:
        limits:
          cpus: '2.0'
          memory: 2G

⏱ Timing Optimization

Network Latency Measurement

import ping3

def measure_latency_to_minecraft():
    minecraft_servers = [
        "api.minecraftservices.com",
        "sessionserver.mojang.com",
        "api.mojang.com"
    ]

    latencies = {}
    for server in minecraft_servers:
        try:
            latency = ping3.ping(server, timeout=5)
            if latency:
                latencies[server] = latency * 1000  # Convert to ms
        except:
            latencies[server] = float('inf')

    return latencies

# Optimize start timing based on latency
latencies = measure_latency_to_minecraft()
avg_latency = sum(l for l in latencies.values() if l != float('inf')) / len(latencies)

# Adjust start time based on latency
if avg_latency < 50:
    start_seconds = 25  # Low latency - start closer to drop
elif avg_latency < 100:
    start_seconds = 30  # Medium latency - default timing
else:
    start_seconds = 40  # High latency - start earlier

Clock Synchronization

import ntplib
from datetime import datetime, timedelta

def sync_system_clock():
    try:
        ntp_client = ntplib.NTPClient()
        response = ntp_client.request('pool.ntp.org')

        # Calculate time offset
        system_time = datetime.now().timestamp()
        ntp_time = response.tx_time
        offset = ntp_time - system_time

        print(f"System clock offset: {offset:.3f} seconds")

        # Warn if offset is significant
        if abs(offset) > 1.0:
            print("WARNING: System clock is significantly off!")
            print("Consider syncing your system clock for optimal performance")

        return offset
    except Exception as e:
        print(f"Could not sync clock: {e}")
        return 0

# Use offset in timing calculations
clock_offset = sync_system_clock()
adjusted_drop_time = drop_time + timedelta(seconds=clock_offset)

📊 Performance Monitoring

Real-time Metrics Dashboard

import time
from collections import deque

class PerformanceMonitor:
    def __init__(self):
        self.start_time = time.time()
        self.request_times = deque(maxlen=100)
        self.success_count = 0
        self.error_count = 0
        self.proxy_switches = 0

    def record_request(self, response_time, success=True):
        self.request_times.append(response_time)
        if success:
            self.success_count += 1
        else:
            self.error_count += 1

    def get_stats(self):
        if not self.request_times:
            return {}

        return {
            'avg_response_time': sum(self.request_times) / len(self.request_times),
            'min_response_time': min(self.request_times),
            'max_response_time': max(self.request_times),
            'success_rate': self.success_count / (self.success_count + self.error_count) * 100,
            'requests_per_second': len(self.request_times) / (time.time() - self.start_time),
            'total_requests': self.success_count + self.error_count
        }

    def print_dashboard(self):
        stats = self.get_stats()
        print("\n" + "="*50)
        print("PERFORMANCE DASHBOARD")
        print("="*50)
        print(f"Avg Response Time: {stats.get('avg_response_time', 0):.0f}ms")
        print(f"Success Rate: {stats.get('success_rate', 0):.1f}%")
        print(f"Requests/Second: {stats.get('requests_per_second', 0):.1f}")
        print(f"Total Requests: {stats.get('total_requests', 0)}")
        print("="*50)

Automated Performance Testing

def run_performance_benchmark(config_variations):
    results = {}

    for name, config in config_variations.items():
        print(f"Testing configuration: {name}")

        # Run test with this configuration
        start_time = time.time()
        success_rate = simulate_snipe_attempts(config)
        duration = time.time() - start_time

        results[name] = {
            'success_rate': success_rate,
            'duration': duration,
            'score': success_rate / duration  # Success per second
        }

    # Find best configuration
    best_config = max(results, key=lambda x: results[x]['score'])
    print(f"Best configuration: {best_config}")

    return results

# Test different configurations
configs = {
    'conservative': {'concurrent_requests': 5, 'request_delay_ms': 50},
    'balanced': {'concurrent_requests': 10, 'request_delay_ms': 25},
    'aggressive': {'concurrent_requests': 20, 'request_delay_ms': 10},
    'extreme': {'concurrent_requests': 50, 'request_delay_ms': 5}
}

benchmark_results = run_performance_benchmark(configs)

⚠ Performance vs. Risk Balance

Risk Assessment Matrix

Configuration Success Rate Risk Level Recommended Use
Conservative 60-70% Low Testing, low-value usernames
Balanced 70-80% Medium Most usernames
Aggressive 80-90% High High-value usernames
Extreme 85-95% Very High Critical usernames only

Rate Limiting Indicators

Watch for these signs of rate limiting: - HTTP 429 responses - Sudden drop in success rate - Increasing response times - Connection timeouts

def detect_rate_limiting(response_times, success_rates):
    # Check for sudden performance degradation
    recent_times = response_times[-10:]
    recent_success = success_rates[-10:]

    if len(recent_times) >= 5:
        avg_recent = sum(recent_times) / len(recent_times)
        avg_overall = sum(response_times) / len(response_times)

        # Response time increased significantly
        if avg_recent > avg_overall * 2:
            return "High response times detected - possible rate limiting"

    if len(recent_success) >= 5:
        recent_avg = sum(recent_success) / len(recent_success)

        # Success rate dropped significantly
        if recent_avg < 0.5:
            return "Low success rate detected - possible rate limiting"

    return None

💡 Advanced Techniques

Adaptive Configuration

class AdaptiveSniper:
    def __init__(self, base_config):
        self.config = base_config
        self.performance_history = []

    def adapt_configuration(self, current_performance):
        self.performance_history.append(current_performance)

        # If performance is declining, become more conservative
        if len(self.performance_history) >= 3:
            recent_avg = sum(self.performance_history[-3:]) / 3
            overall_avg = sum(self.performance_history) / len(self.performance_history)

            if recent_avg < overall_avg * 0.8:
                # Performance declining - reduce aggressiveness
                self.config.request_delay_ms = min(self.config.request_delay_ms * 1.2, 100)
                self.config.concurrent_requests = max(self.config.concurrent_requests - 2, 1)
            elif recent_avg > overall_avg * 1.2:
                # Performance improving - increase aggressiveness
                self.config.request_delay_ms = max(self.config.request_delay_ms * 0.9, 5)
                self.config.concurrent_requests = min(self.config.concurrent_requests + 1, 50)

Machine Learning Optimization

from sklearn.ensemble import RandomForestRegressor
import numpy as np

class MLPerformanceOptimizer:
    def __init__(self):
        self.model = RandomForestRegressor()
        self.training_data = []

    def collect_training_data(self, config, performance):
        features = [
            config.concurrent_requests,
            config.request_delay_ms,
            len(config.proxies),
            config.start_sniping_at_seconds
        ]
        self.training_data.append((features, performance))

    def train_model(self):
        if len(self.training_data) < 10:
            return False

        X = np.array([data[0] for data in self.training_data])
        y = np.array([data[1] for data in self.training_data])

        self.model.fit(X, y)
        return True

    def optimize_config(self, base_config):
        if not self.train_model():
            return base_config

        # Test different configurations
        best_config = base_config
        best_score = 0

        for concurrent in range(5, 51, 5):
            for delay in range(5, 101, 10):
                test_features = [concurrent, delay, len(base_config.proxies), 30]
                predicted_performance = self.model.predict([test_features])[0]

                if predicted_performance > best_score:
                    best_score = predicted_performance
                    best_config.concurrent_requests = concurrent
                    best_config.request_delay_ms = delay

        return best_config

➡ Next Steps