Performance Optimization¶
Maximize your sniping success rate with advanced performance tuning techniques.
Quick Performance Checklist¶
- [ ] Use high-quality residential proxies
- [ ] Optimize
concurrent_requests
andrequest_delay_ms
- [ ] Run on a server with low latency to Minecraft servers
- [ ] Use SSD storage for faster I/O
- [ ] Ensure stable, high-speed internet connection
- [ ] Monitor system resources during sniping
Configuration Optimization¶
High-Performance Configuration¶
For maximum speed and success rate:
snipe:
start_sniping_at_seconds: 30
max_snipe_attempts: 200
request_delay_ms: 10 # Aggressive timing
concurrent_requests: 20 # High concurrency
use_multiple_threads: true
proxy:
enabled: true
rotation_enabled: true
timeout: 5 # Fast timeout
max_retries: 2 # Quick failover
discord:
enabled: false # Disable during snipe for performance
Conservative Configuration¶
For stability and compliance:
snipe:
start_sniping_at_seconds: 45
max_snipe_attempts: 100
request_delay_ms: 50 # Respectful timing
concurrent_requests: 5 # Lower concurrency
use_multiple_threads: true
proxy:
enabled: true
rotation_enabled: true
timeout: 10 # Longer timeout
max_retries: 3 # More retries
discord:
enabled: true # Keep notifications
Performance Tuning Guide¶
1. Concurrent Requests Optimization¶
Find the optimal number of concurrent requests:
# Test different concurrency levels
concurrency_levels = [1, 5, 10, 15, 20, 25, 30]
results = {}
for level in concurrency_levels:
config.concurrent_requests = level
success_rate = run_performance_test(config)
results[level] = success_rate
# Find optimal level
optimal_level = max(results, key=results.get)
print(f"Optimal concurrency: {optimal_level}")
Guidelines: - Start with 10 concurrent requests - Increase gradually while monitoring success rate - Watch for diminishing returns - more isn't always better - Consider proxy limits - don't exceed proxy capacity
2. Request Delay Optimization¶
Balance speed with rate limiting:
# Ultra-aggressive (high risk)
request_delay_ms: 5
# Aggressive (medium risk)
request_delay_ms: 15
# Balanced (recommended)
request_delay_ms: 25
# Conservative (low risk)
request_delay_ms: 50
Testing methodology:
# Test different delays
for delay in 5 10 15 25 50; do
echo "Testing delay: ${delay}ms"
python Main.py snipe --dry-run --request-delay $delay
done
3. Proxy Performance Optimization¶
Proxy Selection Criteria¶
Latency Testing:
import time
import requests
def test_proxy_latency(proxy_url):
latencies = []
for _ in range(10):
start = time.time()
try:
response = requests.get(
"https://api.minecraft.net/status",
proxies={"http": proxy_url, "https": proxy_url},
timeout=5
)
if response.status_code == 200:
latency = (time.time() - start) * 1000
latencies.append(latency)
except:
continue
if latencies:
avg_latency = sum(latencies) / len(latencies)
return avg_latency
return float('inf')
# Test all proxies and rank by latency
proxy_performance = {}
for proxy in proxy_list:
latency = test_proxy_latency(proxy)
proxy_performance[proxy] = latency
# Sort by performance
sorted_proxies = sorted(proxy_performance.items(), key=lambda x: x[1])
Geographic Optimization¶
Recommended proxy locations: 1. US East Coast - Closest to many Minecraft servers 2. US West Coast - Good for Pacific region 3. Europe (London/Amsterdam) - European servers 4. Singapore - Asian servers
proxy:
proxies:
# Prioritize by geographic proximity to Minecraft servers
- "http://us-east-proxy1:port" # Primary
- "http://us-east-proxy2:port" # Backup
- "http://us-west-proxy1:port" # Secondary
- "http://europe-proxy1:port" # Tertiary
System Optimization¶
Hardware Requirements¶
Minimum specs: - CPU: 2 cores, 2.0 GHz - RAM: 4 GB - Storage: 1 GB free space - Network: 10 Mbps stable connection
Recommended specs: - CPU: 4+ cores, 3.0+ GHz - RAM: 8+ GB - Storage: SSD with 10+ GB free - Network: 100+ Mbps with low latency
Optimal specs: - CPU: 8+ cores, 3.5+ GHz (Intel i7/AMD Ryzen 7+) - RAM: 16+ GB - Storage: NVMe SSD - Network: Gigabit fiber with <10ms latency
Operating System Tuning¶
Linux Optimization¶
# Increase file descriptor limits
echo "* soft nofile 65536" >> /etc/security/limits.conf
echo "* hard nofile 65536" >> /etc/security/limits.conf
# Optimize network stack
echo "net.core.rmem_max = 16777216" >> /etc/sysctl.conf
echo "net.core.wmem_max = 16777216" >> /etc/sysctl.conf
echo "net.ipv4.tcp_rmem = 4096 65536 16777216" >> /etc/sysctl.conf
echo "net.ipv4.tcp_wmem = 4096 65536 16777216" >> /etc/sysctl.conf
# Apply changes
sysctl -p
Windows Optimization¶
# Increase network buffer sizes
netsh int tcp set global autotuninglevel=normal
netsh int tcp set global chimney=enabled
netsh int tcp set global rss=enabled
# Disable unnecessary services
sc config "Windows Search" start= disabled
sc config "Superfetch" start= disabled
Python Optimization¶
# Optimize Python runtime
import sys
import gc
# Disable garbage collection during sniping
gc.disable()
# Increase recursion limit if needed
sys.setrecursionlimit(10000)
# Use faster JSON library
try:
import ujson as json
except ImportError:
import json
# Optimize imports
from requests import Session
from concurrent.futures import ThreadPoolExecutor
from asyncio import create_task, gather
Cloud Deployment¶
VPS Recommendations¶
Budget option: - DigitalOcean: $5/month droplet - Vultr: $2.50/month instance - Linode: $5/month nanode
Performance option: - AWS EC2: t3.medium or c5.large - Google Cloud: n1-standard-2 - Azure: Standard_B2s
Premium option: - Dedicated servers with guaranteed resources - Bare metal for maximum performance - Edge locations close to Minecraft servers
Docker Deployment¶
FROM python:3.9-slim
# Install system dependencies
RUN apt-get update && apt-get install -y \
gcc \
&& rm -rf /var/lib/apt/lists/*
# Set working directory
WORKDIR /app
# Copy requirements and install
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
# Copy application
COPY . .
# Optimize Python
ENV PYTHONUNBUFFERED=1
ENV PYTHONDONTWRITEBYTECODE=1
# Run sniper
CMD ["python", "Main.py", "snipe"]
# docker-compose.yml
version: '3.8'
services:
namemc-sniper:
build: .
volumes:
- ./config.yaml:/app/config.yaml
- ./logs:/app/logs
environment:
- MINECRAFT_BEARER_TOKEN=${BEARER_TOKEN}
restart: unless-stopped
deploy:
resources:
limits:
cpus: '2.0'
memory: 2G
Timing Optimization¶
Network Latency Measurement¶
import ping3
def measure_latency_to_minecraft():
minecraft_servers = [
"api.minecraftservices.com",
"sessionserver.mojang.com",
"api.mojang.com"
]
latencies = {}
for server in minecraft_servers:
try:
latency = ping3.ping(server, timeout=5)
if latency:
latencies[server] = latency * 1000 # Convert to ms
except:
latencies[server] = float('inf')
return latencies
# Optimize start timing based on latency
latencies = measure_latency_to_minecraft()
avg_latency = sum(l for l in latencies.values() if l != float('inf')) / len(latencies)
# Adjust start time based on latency
if avg_latency < 50:
start_seconds = 25 # Low latency - start closer to drop
elif avg_latency < 100:
start_seconds = 30 # Medium latency - default timing
else:
start_seconds = 40 # High latency - start earlier
Clock Synchronization¶
import ntplib
from datetime import datetime, timedelta
def sync_system_clock():
try:
ntp_client = ntplib.NTPClient()
response = ntp_client.request('pool.ntp.org')
# Calculate time offset
system_time = datetime.now().timestamp()
ntp_time = response.tx_time
offset = ntp_time - system_time
print(f"System clock offset: {offset:.3f} seconds")
# Warn if offset is significant
if abs(offset) > 1.0:
print("WARNING: System clock is significantly off!")
print("Consider syncing your system clock for optimal performance")
return offset
except Exception as e:
print(f"Could not sync clock: {e}")
return 0
# Use offset in timing calculations
clock_offset = sync_system_clock()
adjusted_drop_time = drop_time + timedelta(seconds=clock_offset)
Performance Monitoring¶
Real-time Metrics Dashboard¶
import time
from collections import deque
class PerformanceMonitor:
def __init__(self):
self.start_time = time.time()
self.request_times = deque(maxlen=100)
self.success_count = 0
self.error_count = 0
self.proxy_switches = 0
def record_request(self, response_time, success=True):
self.request_times.append(response_time)
if success:
self.success_count += 1
else:
self.error_count += 1
def get_stats(self):
if not self.request_times:
return {}
return {
'avg_response_time': sum(self.request_times) / len(self.request_times),
'min_response_time': min(self.request_times),
'max_response_time': max(self.request_times),
'success_rate': self.success_count / (self.success_count + self.error_count) * 100,
'requests_per_second': len(self.request_times) / (time.time() - self.start_time),
'total_requests': self.success_count + self.error_count
}
def print_dashboard(self):
stats = self.get_stats()
print("\n" + "="*50)
print("PERFORMANCE DASHBOARD")
print("="*50)
print(f"Avg Response Time: {stats.get('avg_response_time', 0):.0f}ms")
print(f"Success Rate: {stats.get('success_rate', 0):.1f}%")
print(f"Requests/Second: {stats.get('requests_per_second', 0):.1f}")
print(f"Total Requests: {stats.get('total_requests', 0)}")
print("="*50)
Automated Performance Testing¶
def run_performance_benchmark(config_variations):
results = {}
for name, config in config_variations.items():
print(f"Testing configuration: {name}")
# Run test with this configuration
start_time = time.time()
success_rate = simulate_snipe_attempts(config)
duration = time.time() - start_time
results[name] = {
'success_rate': success_rate,
'duration': duration,
'score': success_rate / duration # Success per second
}
# Find best configuration
best_config = max(results, key=lambda x: results[x]['score'])
print(f"Best configuration: {best_config}")
return results
# Test different configurations
configs = {
'conservative': {'concurrent_requests': 5, 'request_delay_ms': 50},
'balanced': {'concurrent_requests': 10, 'request_delay_ms': 25},
'aggressive': {'concurrent_requests': 20, 'request_delay_ms': 10},
'extreme': {'concurrent_requests': 50, 'request_delay_ms': 5}
}
benchmark_results = run_performance_benchmark(configs)
Performance vs. Risk Balance¶
Risk Assessment Matrix¶
Configuration | Success Rate | Risk Level | Recommended Use |
---|---|---|---|
Conservative | 60-70% | Low | Testing, low-value usernames |
Balanced | 70-80% | Medium | Most usernames |
Aggressive | 80-90% | High | High-value usernames |
Extreme | 85-95% | Very High | Critical usernames only |
Rate Limiting Indicators¶
Watch for these signs of rate limiting: - HTTP 429 responses - Sudden drop in success rate - Increasing response times - Connection timeouts
def detect_rate_limiting(response_times, success_rates):
# Check for sudden performance degradation
recent_times = response_times[-10:]
recent_success = success_rates[-10:]
if len(recent_times) >= 5:
avg_recent = sum(recent_times) / len(recent_times)
avg_overall = sum(response_times) / len(response_times)
# Response time increased significantly
if avg_recent > avg_overall * 2:
return "High response times detected - possible rate limiting"
if len(recent_success) >= 5:
recent_avg = sum(recent_success) / len(recent_success)
# Success rate dropped significantly
if recent_avg < 0.5:
return "Low success rate detected - possible rate limiting"
return None
Advanced Techniques¶
Adaptive Configuration¶
class AdaptiveSniper:
def __init__(self, base_config):
self.config = base_config
self.performance_history = []
def adapt_configuration(self, current_performance):
self.performance_history.append(current_performance)
# If performance is declining, become more conservative
if len(self.performance_history) >= 3:
recent_avg = sum(self.performance_history[-3:]) / 3
overall_avg = sum(self.performance_history) / len(self.performance_history)
if recent_avg < overall_avg * 0.8:
# Performance declining - reduce aggressiveness
self.config.request_delay_ms = min(self.config.request_delay_ms * 1.2, 100)
self.config.concurrent_requests = max(self.config.concurrent_requests - 2, 1)
elif recent_avg > overall_avg * 1.2:
# Performance improving - increase aggressiveness
self.config.request_delay_ms = max(self.config.request_delay_ms * 0.9, 5)
self.config.concurrent_requests = min(self.config.concurrent_requests + 1, 50)
Machine Learning Optimization¶
from sklearn.ensemble import RandomForestRegressor
import numpy as np
class MLPerformanceOptimizer:
def __init__(self):
self.model = RandomForestRegressor()
self.training_data = []
def collect_training_data(self, config, performance):
features = [
config.concurrent_requests,
config.request_delay_ms,
len(config.proxies),
config.start_sniping_at_seconds
]
self.training_data.append((features, performance))
def train_model(self):
if len(self.training_data) < 10:
return False
X = np.array([data[0] for data in self.training_data])
y = np.array([data[1] for data in self.training_data])
self.model.fit(X, y)
return True
def optimize_config(self, base_config):
if not self.train_model():
return base_config
# Test different configurations
best_config = base_config
best_score = 0
for concurrent in range(5, 51, 5):
for delay in range(5, 101, 10):
test_features = [concurrent, delay, len(base_config.proxies), 30]
predicted_performance = self.model.predict([test_features])[0]
if predicted_performance > best_score:
best_score = predicted_performance
best_config.concurrent_requests = concurrent
best_config.request_delay_ms = delay
return best_config
Next Steps¶
- Learn troubleshooting techniques in Troubleshooting
- Understand legal considerations in Legal Notice
- Get support in Support